Paper Reading AI Learner

What do Compressed Large Language Models Forget? Robustness Challenges in Model Compression

2021-10-16 00:20:04
Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, Ahmed Hassan Awadallah

Abstract

Recent works have focused on compressing pre-trained language models (PLMs) like BERT where the major focus has been to improve the compressed model performance for downstream tasks. However, there has been no study in analyzing the impact of compression on the generalizability and robustness of these models. Towards this end, we study two popular model compression techniques including knowledge distillation and pruning and show that compressed models are significantly less robust than their PLM counterparts on adversarial test sets although they obtain similar performance on in-distribution development sets for a task. Further analysis indicates that the compressed models overfit on the easy samples and generalize poorly on the hard ones. We further leverage this observation to develop a regularization strategy for model compression based on sample uncertainty. Experimental results on several natural language understanding tasks demonstrate our mitigation framework to improve both the adversarial generalization as well as in-distribution task performance of the compressed models.

Abstract (translated)

URL

https://arxiv.org/abs/2110.08419

PDF

https://arxiv.org/pdf/2110.08419.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot