Paper Reading AI Learner

Metadata Shaping: Natural Language Annotations for the Tail

2021-10-16 01:00:47
Simran Arora, Sen Wu, Enci Liu, Christopher Re

Abstract

Language models (LMs) have made remarkable progress, but still struggle to generalize beyond the training data to rare linguistic patterns. Since rare entities and facts are prevalent in the queries users submit to popular applications such as search and personal assistant systems, improving the ability of LMs to reliably capture knowledge over rare entities is a pressing challenge studied in significant prior work. Noticing that existing approaches primarily modify the LM architecture or introduce auxiliary objectives to inject useful entity knowledge, we ask to what extent we could match the quality of these architectures using a base LM architecture, and only changing the data? We propose metadata shaping, a method in which readily available metadata, such as entity descriptions and categorical tags, are appended to examples based on information theoretic metrics. Intuitively, if metadata corresponding to popular entities overlap with metadata for rare entities, the LM may be able to better reason about the rare entities using patterns learned from similar popular entities. On standard entity-rich tasks (TACRED, FewRel, OpenEntity), with no changes to the LM whatsoever, metadata shaping exceeds the BERT-baseline by up to 5.3 F1 points, and achieves or competes with state-of-the-art results. We further show the improvements are up to 10x larger on examples containing tail versus popular entities.

Abstract (translated)

URL

https://arxiv.org/abs/2110.08430

PDF

https://arxiv.org/pdf/2110.08430.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot