Paper Reading AI Learner

MDP Abstraction with Successor Features

2021-10-18 11:35:08
Dongge Han, Michael Wooldridge, Sebastian Tschiatschek

Abstract

Abstraction plays an important role for generalisation of knowledge and skills, and is key to sample efficient learning and planning. For many complex problems an abstract plan can be formed first, which is then instantiated by filling in the necessary low-level details. Often, such abstract plans generalize well to related new problems. We study abstraction in the context of reinforcement learning, in which agents may perform state or temporal abstractions. Temporal abstractions aka options represent temporally-extended actions in the form of option policies. However, typically acquired option policies cannot be directly transferred to new environments due to changes in the state space or transition dynamics. Furthermore, many existing state abstraction schemes ignore the correlation between state and temporal abstraction. In this work, we propose successor abstraction, a novel abstraction scheme building on successor features. This includes an algorithm for encoding and instantiation of abstract options across different environments, and a state abstraction mechanism based on the abstract options. Our successor abstraction allows us to learn abstract environment models with semantics that are transferable across different environments through encoding and instantiation of abstract options. Empirically, we achieve better transfer and improved performance on a set of benchmark tasks as compared to relevant state of the art baselines.

Abstract (translated)

URL

https://arxiv.org/abs/2110.09196

PDF

https://arxiv.org/pdf/2110.09196.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot