Paper Reading AI Learner

Improving Robustness of Reinforcement Learning for Power System Control with Adversarial Training

2021-10-18 00:50:34
Alexander Pan, Yongkyun (Daniel)Lee, Huan Zhang, Yize Chen, Yuanyuan Shi

Abstract

Due to the proliferation of renewable energy and its intrinsic intermittency and stochasticity, current power systems face severe operational challenges. Data-driven decision-making algorithms from reinforcement learning (RL) offer a solution towards efficiently operating a clean energy system. Although RL algorithms achieve promising performance compared to model-based control models, there has been limited investigation of RL robustness in safety-critical physical systems. In this work, we first show that several competition-winning, state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks. Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack by successfully attacking multiple winning agents from the Learning To Run a Power Network (L2RPN) challenge, under both white-box and black-box attack settings. We then propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions. To the best of our knowledge, our work is the first to highlight the fragility of grid control RL algorithms, and contribute an effective defense scheme towards improving their robustness and security.

Abstract (translated)

URL

https://arxiv.org/abs/2110.08956

PDF

https://arxiv.org/pdf/2110.08956.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot