Paper Reading AI Learner

Contrastive Learning of Visual-Semantic Embeddings

2021-10-17 17:28:04
Anurag Jain, Yashaswi Verma

Abstract

Contrastive learning is a powerful technique to learn representations that are semantically distinctive and geometrically invariant. While most of the earlier approaches have demonstrated its effectiveness on single-modality learning tasks such as image classification, recently there have been a few attempts towards extending this idea to multi-modal data. In this paper, we propose two loss functions based on normalized cross-entropy to perform the task of learning joint visual-semantic embedding using batch contrastive training. In a batch, for a given anchor point from one modality, we consider its negatives only from another modality, and define our first contrastive loss based on expected violations incurred by all the negatives. Next, we update this loss and define the second contrastive loss based on the violation incurred only by the hardest negative. We compare our results with existing visual-semantic embedding methods on cross-modal image-to-text and text-to-image retrieval tasks using the MS-COCO and Flickr30K datasets, where we outperform the state-of-the-art on the MS-COCO dataset and achieve comparable results on the Flickr30K dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2110.08872

PDF

https://arxiv.org/pdf/2110.08872.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot