Paper Reading AI Learner

Backpropagation with Biologically Plausible Spatio-Temporal Adjustment For Training Deep Spiking Neural Networks

2021-10-17 15:55:51
Guobin Shen, Dongcheng Zhao, Yi Zeng

Abstract

The spiking neural network (SNN) mimics the information processing operation in the human brain, represents and transmits information in spike trains containing wealthy spatial and temporal information, and shows superior performance on many cognitive tasks. In addition, the event-driven information processing enables the energy-efficient implementation on neuromorphic chips. The success of deep learning is inseparable from backpropagation. Due to the discrete information transmission, directly applying the backpropagation to the training of the SNN still has a performance gap compared with the traditional deep neural networks. Also, a large simulation time is required to achieve better performance, which results in high latency. To address the problems, we propose a biological plausible spatial adjustment, which rethinks the relationship between membrane potential and spikes and realizes a reasonable adjustment of gradients to different time steps. And it precisely controls the backpropagation of the error along the spatial dimension. Secondly, we propose a biologically plausible temporal adjustment making the error propagate across the spikes in the temporal dimension, which overcomes the problem of the temporal dependency within a single spike period of the traditional spiking neurons. We have verified our algorithm on several datasets, and the experimental results have shown that our algorithm greatly reduces the network latency and energy consumption while also improving network performance. We have achieved state-of-the-art performance on the neuromorphic datasets N-MNIST, DVS-Gesture, and DVS-CIFAR10. For the static datasets MNIST and CIFAR10, we have surpassed most of the traditional SNN backpropagation training algorithm and achieved relatively superior performance.

Abstract (translated)

URL

https://arxiv.org/abs/2110.08858

PDF

https://arxiv.org/pdf/2110.08858.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot