Paper Reading AI Learner

R4: A Framework for Route Representation and Route Recommendation

2021-10-20 10:21:08
Ran Cheng, Chao Chen, Longfei Xu, Shen Li, Lei Wang, Hengbin Cui, Kaikui Liu, Xiaolong Li

Abstract

Route recommendation is significant in navigation service. Two major challenges for route recommendation are route representation and user representation. Different from items that can be identified by unique IDs in traditional recommendation, routes are combinations of links (i.e., a road segment and its following action like turning left) and the number of combinations could be close to infinite. Besides, the representation of a route changes under different scenarios. These facts result in severe sparsity of routes, which increases the difficulty of route representation. Moreover, link attribute deficiencies and errors affect preciseness of route representation. Because of the sparsity of routes, the interaction data between users and routes are also sparse. This makes it not easy to acquire user representation from historical user-item interactions as traditional recommendations do. To address these issues, we propose a novel learning framework R4. In R4, we design a sparse & dense network to obtain representations of routes. The sparse unit learns link ID embeddings and aggregates them to represent a route, which captures implicit route characteristics and subsequently alleviates problems caused by link attribute deficiencies and errors. The dense unit extracts implicit local features of routes from link attributes. For user representation, we utilize a series of historical navigation to extract user preference. R4 achieves remarkable performance in both offline and online experiments.

Abstract (translated)

URL

https://arxiv.org/abs/2110.10474

PDF

https://arxiv.org/pdf/2110.10474.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot