Paper Reading AI Learner

A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays

2021-10-20 11:01:23
Leonardo Ravaglia, Manuele Rusci, Davide Nadalini, Alessandro Capotondi, Francesco Conti, Luca Benini

Abstract

In the last few years, research and development on Deep Learning models and techniques for ultra-low-power devices in a word, TinyML has mainly focused on a train-then-deploy assumption, with static models that cannot be adapted to newly collected data without cloud-based data collection and fine-tuning. Latent Replay-based Continual Learning (CL) techniques[1] enable online, serverless adaptation in principle, but so farthey have still been too computation and memory-hungry for ultra-low-power TinyML devices, which are typically based on microcontrollers. In this work, we introduce a HW/SW platform for end-to-end CL based on a 10-core FP32-enabled parallel ultra-low-power (PULP) processor. We rethink the baseline Latent Replay CL algorithm, leveraging quantization of the frozen stage of the model and Latent Replays (LRs) to reduce their memory cost with minimal impact on accuracy. In particular, 8-bit compression of the LR memory proves to be almost lossless (-0.26% with 3000LR) compared to the full-precision baseline implementation, but requires 4x less memory, while 7-bit can also be used with an additional minimal accuracy degradation (up to 5%). We also introduce optimized primitives for forward and backward propagation on the PULP processor. Our results show that by combining these techniques, continual learning can be achieved in practice using less than 64MB of memory an amount compatible with embedding in TinyML devices. On an advanced 22nm prototype of our platform, called VEGA, the proposed solution performs onaverage 65x faster than a low-power STM32 L4 microcontroller, being 37x more energy efficient enough for a lifetime of 535h when learning a new mini-batch of data once every minute.

Abstract (translated)

URL

https://arxiv.org/abs/2110.10486

PDF

https://arxiv.org/pdf/2110.10486.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot