Paper Reading AI Learner

Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph Evaluation Trajectory

2021-10-06 09:25:55
Alpay Tekin, Ahmed Nebli, Islem Rekik

Abstract

Several brain disorders can be detected by observing alterations in the brain's structural and functional connectivities. Neurological findings suggest that early diagnosis of brain disorders, such as mild cognitive impairment (MCI), can prevent and even reverse its development into Alzheimer's disease (AD). In this context, recent studies aimed to predict the evolution of brain connectivities over time by proposing machine learning models that work on brain images. However, such an approach is costly and time-consuming. Here, we propose to use brain connectivities as a more efficient alternative for time-dependent brain disorder diagnosis by regarding the brain as instead a large interconnected graph characterizing the interconnectivity scheme between several brain regions. We term our proposed method Recurrent Brain Graph Mapper (RBGM), a novel efficient edge-based recurrent graph neural network that predicts the time-dependent evaluation trajectory of a brain graph from a single baseline. Our RBGM contains a set of recurrent neural network-inspired mappers for each time point, where each mapper aims to project the ground-truth brain graph onto its next time point. We leverage the teacher forcing method to boost training and improve the evolved brain graph quality. To maintain the topological consistency between the predicted brain graphs and their corresponding ground-truth brain graphs at each time point, we further integrate a topological loss. We also use l1 loss to capture time-dependency and minimize the distance between the brain graph at consecutive time points for regularization. Benchmarks against several variants of RBGM and state-of-the-art methods prove that we can achieve the same accuracy in predicting brain graph evolution more efficiently, paving the way for novel graph neural network architecture and a highly efficient training scheme.

Abstract (translated)

URL

https://arxiv.org/abs/2110.11237

PDF

https://arxiv.org/pdf/2110.11237.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot