Paper Reading AI Learner

Decentralised Person Re-Identification with Selective Knowledge Aggregation

2021-10-21 18:09:53
Shitong Sun, Guile Wu, Shaogang Gong

Abstract

Existing person re-identification (Re-ID) methods mostly follow a centralised learning paradigm which shares all training data to a collection for model learning. This paradigm is limited when data from different sources cannot be shared due to privacy concerns. To resolve this problem, two recent works have introduced decentralised (federated) Re-ID learning for constructing a globally generalised model (server)without any direct access to local training data nor shared data across different source domains (clients). However, these methods are poor on how to adapt the generalised model to maximise its performance on individual client domain Re-ID tasks having different Re-ID label spaces, due to a lack of understanding of data heterogeneity across domains. We call this poor 'model personalisation'. In this work, we present a new Selective Knowledge Aggregation approach to decentralised person Re-ID to optimise the trade-off between model personalisation and generalisation. Specifically, we incorporate attentive normalisation into the normalisation layers in a deep ReID model and propose to learn local normalisation layers specific to each domain, which are decoupled from the global model aggregation in federated Re-ID learning. This helps to preserve model personalisation knowledge on each local client domain and learn instance-specific information. Further, we introduce a dual local normalisation mechanism to learn generalised normalisation layers in each local model, which are then transmitted to the global model for central aggregation. This facilitates selective knowledge aggregation on the server to construct a global generalised model for out-of-the-box deployment on unseen novel domains. Extensive experiments on eight person Re-ID datasets show that the proposed approach to decentralised Re-ID significantly outperforms the state-of-the-art decentralised methods.

Abstract (translated)

URL

https://arxiv.org/abs/2110.11384

PDF

https://arxiv.org/pdf/2110.11384.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot