Paper Reading AI Learner

HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise

2021-10-06 16:48:48
Souvik Kundu, Massoud Pedram, Peter A. Beerel

Abstract

Low-latency deep spiking neural networks (SNNs) have become a promising alternative to conventional artificial neural networks (ANNs) because of their potential for increased energy efficiency on event-driven neuromorphic hardware. Neural networks, including SNNs, however, are subject to various adversarial attacks and must be trained to remain resilient against such attacks for many applications. Nevertheless, due to prohibitively high training costs associated with SNNs, analysis, and optimization of deep SNNs under various adversarial attacks have been largely overlooked. In this paper, we first present a detailed analysis of the inherent robustness of low-latency SNNs against popular gradient-based attacks, namely fast gradient sign method (FGSM) and projected gradient descent (PGD). Motivated by this analysis, to harness the model robustness against these attacks we present an SNN training algorithm that uses crafted input noise and incurs no additional training time. To evaluate the merits of our algorithm, we conducted extensive experiments with variants of VGG and ResNet on both CIFAR-10 and CIFAR-100 datasets. Compared to standard trained direct input SNNs, our trained models yield improved classification accuracy of up to 13.7% and 10.1% on FGSM and PGD attack-generated images, respectively, with negligible loss in clean image accuracy. Our models also outperform inherently robust SNNs trained on rate-coded inputs with improved or similar classification performance on attack-generated images while having up to 25x and 4.6x lower latency and computation energy, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2110.11417

PDF

https://arxiv.org/pdf/2110.11417.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot