Paper Reading AI Learner

Multimodal-Boost: Multimodal Medical Image Super-Resolution using Multi-Attention Network with Wavelet Transform

2021-10-22 10:13:46
Farah Deeba, Fayaz Ali Dharejo, Muhammad Zawish, Yuanchun Zhou, Kapal Dev, Sunder Ali Khowaja, Nawab Muhammad Faseeh Qureshi

Abstract

Multimodal medical images are widely used by clinicians and physicians to analyze and retrieve complementary information from high-resolution images in a non-invasive manner. The loss of corresponding image resolution degrades the overall performance of medical image diagnosis. Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework by continually improving the architectural components and training strategies associated with convolutional neural networks (CNN) on low-resolution images. However, existing work lacks in two ways: i) the SR output produced exhibits poor texture details, and often produce blurred edges, ii) most of the models have been developed for a single modality, hence, require modification to adapt to a new one. This work addresses (i) by proposing generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data. Existing approaches based on the GAN have yielded good SR results; however, the texture details of their SR output have been experimentally confirmed to be deficient for medical images particularly. The integration of wavelet transform (WT) and GANs in our proposed SR model addresses the aforementioned limitation concerning textons. The WT divides the LR image into multiple frequency bands, while the transferred GAN utilizes multiple attention and upsample blocks to predict high-frequency components. Moreover, we present a learning technique for training a domain-specific classifier as a perceptual loss function. Combining multi-attention GAN loss with a perceptual loss function results in a reliable and efficient performance. Applying the same model for medical images from diverse modalities is challenging, our work addresses (ii) by training and performing on several modalities via transfer learning.

Abstract (translated)

URL

https://arxiv.org/abs/2110.11684

PDF

https://arxiv.org/pdf/2110.11684.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot