Paper Reading AI Learner

When to Prune? A Policy towards Early Structural Pruning

2021-10-22 18:39:22
Maying Shen, Pavlo Molchanov, Hongxu Yin, Jose M. Alvarez

Abstract

Pruning enables appealing reductions in network memory footprint and time complexity. Conventional post-training pruning techniques lean towards efficient inference while overlooking the heavy computation for training. Recent exploration of pre-training pruning at initialization hints on training cost reduction via pruning, but suffers noticeable performance degradation. We attempt to combine the benefits of both directions and propose a policy that prunes as early as possible during training without hurting performance. Instead of pruning at initialization, our method exploits initial dense training for few epochs to quickly guide the architecture, while constantly evaluating dominant sub-networks via neuron importance ranking. This unveils dominant sub-networks whose structures turn stable, allowing conventional pruning to be pushed earlier into the training. To do this early, we further introduce an Early Pruning Indicator (EPI) that relies on sub-network architectural similarity and quickly triggers pruning when the sub-network's architecture stabilizes. Through extensive experiments on ImageNet, we show that EPI empowers a quick tracking of early training epochs suitable for pruning, offering same efficacy as an otherwise ``oracle'' grid-search that scans through epochs and requires orders of magnitude more compute. Our method yields $1.4\%$ top-1 accuracy boost over state-of-the-art pruning counterparts, cuts down training cost on GPU by $2.4\times$, hence offers a new efficiency-accuracy boundary for network pruning during training.

Abstract (translated)

URL

https://arxiv.org/abs/2110.12007

PDF

https://arxiv.org/pdf/2110.12007.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot