Paper Reading AI Learner

A Dynamic Keypoints Selection Network for 6DoF Pose Estimation

2021-10-24 09:58:56
Haowen Sun, Taiyong Wang

Abstract

6 DoF poses estimation problem aims to estimate the rotation and translation parameters between two coordinates, such as object world coordinate and camera world coordinate. Although some advances are made with the help of deep learning, how to full use scene information is still a problem. Prior works tackle the problem by pixel-wise feature fusion but need to randomly selecte numerous points from images, which can not satisfy the demands of fast inference simultaneously and accurate pose estimation. In this work, we present a novel deep neural network based on dynamic keypoints selection designed for 6DoF pose estimation from a single RGBD image. Our network includes three parts, instance semantic segmentation, edge points detection and 6DoF pose estimation. Given an RGBD image, our network is trained to predict pixel category and the translation to edge points and center points. Then, a least-square fitting manner is applied to estimate the 6DoF pose parameters. Specifically, we propose a dynamic keypoints selection algorithm to choose keypoints from the foreground feature map. It allows us to leverage geometric and appearance information. During 6DoF pose estimation, we utilize the instance semantic segmentation result to filter out background points and only use foreground points to finish edge points detection and 6DoF pose estimation. Experiments on two commonly used 6DoF estimation benchmark datasets, YCB-Video and LineMoD, demonstrate that our method outperforms the state-of-the-art methods and achieves significant improvements over other same category methods time efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2110.12401

PDF

https://arxiv.org/pdf/2110.12401.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot