Paper Reading AI Learner

Learning Insertion Primitives with Discrete-Continuous Hybrid Action Space for Robotic Assembly Tasks

2021-10-25 03:08:01
Xiang Zhang, Shiyu Jin, Changhao Wang, Xinghao Zhu, Masayoshi Tomizuka

Abstract

This paper introduces a discrete-continuous action space to learn insertion primitives for robotic assembly tasks. Primitive is a sequence of elementary actions with certain exit conditions, such as "pushing down the peg until contact". Since the primitive is an abstraction of robot control commands and encodes human prior knowledge, it reduces the exploration difficulty and yields better learning efficiency. In this paper, we learn robot assembly skills via primitives. Specifically, we formulate insertion primitives as parameterized actions: hybrid actions consisting of discrete primitive types and continuous primitive parameters. Compared with the previous work using a set of discretized parameters for each primitive, the agent in our method can freely choose primitive parameters from a continuous space, which is more flexible and efficient. To learn these insertion primitives, we propose Twin-Smoothed Multi-pass Deep Q-Network (TS-MP-DQN), an advanced version of MP-DQN with twin Q-network to reduce the Q-value over-estimation. Extensive experiments are conducted in the simulation and real world for validation. From experiment results, our approach achieves higher success rates than three baselines: MP-DQN with parameterized actions, primitives with discrete parameters, and continuous velocity control. Furthermore, learned primitives are robust to sim-to-real transfer and can generalize to challenging assembly tasks such as tight round peg-hole and complex shaped electric connectors with promising success rates. Experiment videos are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2110.12618

PDF

https://arxiv.org/pdf/2110.12618.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot