Paper Reading AI Learner

DASentimental: Detecting depression, anxiety and stress in texts via emotional recall, cognitive networks and machine learning

2021-10-26 13:58:46
Asra Fatima, Li Ying, Thomas Hills, Massimo Stella

Abstract

Most current affect scales and sentiment analysis on written text focus on quantifying valence (sentiment) -- the most primary dimension of emotion. However, emotions are broader and more complex than valence. Distinguishing negative emotions of similar valence could be important in contexts such as mental health. This project proposes a semi-supervised machine learning model (DASentimental) to extract depression, anxiety and stress from written text. First, we trained the model to spot how sequences of recalled emotion words by $N=200$ individuals correlated with their responses to the Depression Anxiety Stress Scale (DASS-21). Within the framework of cognitive network science, we model every list of recalled emotions as a walk over a networked mental representation of semantic memory, with emotions connected according to free associations in people's memory. Among several tested machine learning approaches, we find that a multilayer perceptron neural network trained on word sequences and semantic network distances can achieve state-of-art, cross-validated predictions for depression ($R = 0.7$), anxiety ($R = 0.44$) and stress ($R = 0.52$). Though limited by sample size, this first-of-its-kind approach enables quantitative explorations of key semantic dimensions behind DAS levels. We find that semantic distances between recalled emotions and the dyad "sad-happy" are crucial features for estimating depression levels but are less important for anxiety and stress. We also find that semantic distance of recalls from "fear" can boost the prediction of anxiety but it becomes redundant when the "sad-happy" dyad is considered. Adopting DASentimental as a semi-supervised learning tool to estimate DAS in text, we apply it to a dataset of 142 suicide notes. We conclude by discussing key directions for future research enabled by artificial intelligence detecting stress, anxiety and depression.

Abstract (translated)

URL

https://arxiv.org/abs/2110.13710

PDF

https://arxiv.org/pdf/2110.13710.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot