Paper Reading AI Learner

Predictive Geological Mapping with Convolution Neural Network Using Statistical Data Augmentation on a 3D Model

2021-10-27 13:56:40
Cedou Matthieu, Gloaguen Erwan, Blouin Martin, Caté Antoine, Paiement Jean-Philippe, Tirdad Shiva

Abstract

Airborne magnetic data are commonly used to produce preliminary geological maps. Machine learning has the potential to partly fulfill this task rapidly and objectively, as geological mapping is comparable to a semantic segmentation problem. Because this method requires a high-quality dataset, we developed a data augmentation workflow that uses a 3D geological and magnetic susceptibility model as input. The workflow uses soft-constrained Multi-Point Statistics, to create many synthetic 3D geological models, and Sequential Gaussian Simulation algorithms, to populate the models with the appropriate magnetic distribution. Then, forward modeling is used to compute the airborne magnetic responses of the synthetic models, which are associated with their counterpart surficial lithologies. A Gated Shape Convolutional Neural Network algorithm was trained on a generated synthetic dataset to perform geological mapping of airborne magnetic data and detect lithological contacts. The algorithm also provides attention maps highlighting the structures at different scales, and clustering was applied to its high-level features to do a semi-supervised segmentation of the area. The validation conducted on a portion of the synthetic dataset and data from adjacent areas shows that the methodology is suitable to segment the surficial geology using airborne magnetic data. Especially, the clustering shows a good segmentation of the magnetic anomalies into a pertinent geological map. Moreover, the first attention map isolates the structures at low scales and shows a pertinent representation of the original data. Thus, our method can be used to produce preliminary geological maps of good quality and new representations of any area where a geological and petrophysical 3D model exists, or in areas sharing the same geological context, using airborne magnetic data only.

Abstract (translated)

URL

https://arxiv.org/abs/2110.14440

PDF

https://arxiv.org/pdf/2110.14440.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot