Paper Reading AI Learner

Closing the Gap Between Time-Domain Multi-Channel Speech Enhancement on Real and Simulation Conditions

2021-10-27 03:01:44
Wangyou Zhang, Jing Shi, Chenda Li, Shinji Watanabe, Yanmin Qian

Abstract

The deep learning based time-domain models, e.g. Conv-TasNet, have shown great potential in both single-channel and multi-channel speech enhancement. However, many experiments on the time-domain speech enhancement model are done in simulated conditions, and it is not well studied whether the good performance can generalize to real-world scenarios. In this paper, we aim to provide an insightful investigation of applying multi-channel Conv-TasNet based speech enhancement to both simulation and real data. Our preliminary experiments show a large performance gap between the two conditions in terms of the ASR performance. Several approaches are applied to close this gap, including the integration of multi-channel Conv-TasNet into the beamforming model with various strategies, and the joint training of speech enhancement and speech recognition models. Our experiments on the CHiME-4 corpus show that our proposed approaches can greatly reduce the speech recognition performance discrepancy between simulation and real data, while preserving the strong speech enhancement capability in the frontend.

Abstract (translated)

URL

https://arxiv.org/abs/2110.14139

PDF

https://arxiv.org/pdf/2110.14139.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot