Paper Reading AI Learner

AEVA: Black-box Backdoor Detection Using Adversarial Extreme Value Analysis

2021-10-28 04:36:48
Junfeng Guo, Ang Li, Cong Liu

Abstract

Deep neural networks (DNNs) are proved to be vulnerable against backdoor attacks. A backdoor is often embedded in the target DNNs through injecting a backdoor trigger into training examples, which can cause the target DNNs misclassify an input attached with the backdoor trigger. Existing backdoor detection methods often require the access to the original poisoned training data, the parameters of the target DNNs, or the predictive confidence for each given input, which are impractical in many real-world applications, e.g., on-device deployed DNNs. We address the black-box hard-label backdoor detection problem where the DNN is fully black-box and only its final output label is accessible. We approach this problem from the optimization perspective and show that the objective of backdoor detection is bounded by an adversarial objective. Further theoretical and empirical studies reveal that this adversarial objective leads to a solution with highly skewed distribution; a singularity is often observed in the adversarial map of a backdoor-infected example, which we call the adversarial singularity phenomenon. Based on this observation, we propose the adversarial extreme value analysis(AEVA) to detect backdoors in black-box neural networks. AEVA is based on an extreme value analysis of the adversarial map, computed from the monte-carlo gradient estimation. Evidenced by extensive experiments across multiple popular tasks and backdoor attacks, our approach is shown effective in detecting backdoor attacks under the black-box hard-label scenarios.

Abstract (translated)

URL

https://arxiv.org/abs/2110.14880

PDF

https://arxiv.org/pdf/2110.14880.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot