Paper Reading AI Learner

Learning Continuous Face Representation with Explicit Functions

2021-10-25 03:49:20
Liping Zhang, Weijun Li, Linjun Sun, Lina Yu, Xin Ning, Xiaoli Dong, Jian Xu, Hong Qin

Abstract

How to represent a face pattern? While it is presented in a continuous way in our visual system, computers often store and process the face image in a discrete manner with 2D arrays of pixels. In this study, we attempt to learn a continuous representation for face images with explicit functions. First, we propose an explicit model (EmFace) for human face representation in the form of a finite sum of mathematical terms, where each term is an analytic function element. Further, to estimate the unknown parameters of EmFace, a novel neural network, EmNet, is designed with an encoder-decoder structure and trained using the backpropagation algorithm, where the encoder is defined by a deep convolutional neural network and the decoder is an explicit mathematical expression of EmFace. Experimental results show that EmFace has a higher representation performance on faces with various expressions, postures, and other factors, compared to that of other methods. Furthermore, EmFace achieves reasonable performance on several face image processing tasks, including face image restoration, denoising, and transformation.

Abstract (translated)

URL

https://arxiv.org/abs/2110.15268

PDF

https://arxiv.org/pdf/2110.15268.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot