Paper Reading AI Learner

NxMTransformer: Semi-Structured Sparsification for Natural Language Understanding via ADMM

2021-10-28 17:43:06
Connor Holmes, Minjia Zhang, Yuxiong He, Bo Wu

Abstract

Natural Language Processing (NLP) has recently achieved success by using huge pre-trained Transformer networks. However, these models often contain hundreds of millions or even billions of parameters, bringing challenges to online deployment due to latency constraints. Recently, hardware manufacturers have introduced dedicated hardware for NxM sparsity to provide the flexibility of unstructured pruning with the runtime efficiency of structured approaches. NxM sparsity permits arbitrarily selecting M parameters to retain from a contiguous group of N in the dense representation. However, due to the extremely high complexity of pre-trained models, the standard sparse fine-tuning techniques often fail to generalize well on downstream tasks, which have limited data resources. To address such an issue in a principled manner, we introduce a new learning framework, called NxMTransformer, to induce NxM semi-structured sparsity on pretrained language models for natural language understanding to obtain better performance. In particular, we propose to formulate the NxM sparsity as a constrained optimization problem and use Alternating Direction Method of Multipliers (ADMM) to optimize the downstream tasks while taking the underlying hardware constraints into consideration. ADMM decomposes the NxM sparsification problem into two sub-problems that can be solved sequentially, generating sparsified Transformer networks that achieve high accuracy while being able to effectively execute on newly released hardware. We apply our approach to a wide range of NLP tasks, and our proposed method is able to achieve 1.7 points higher accuracy in GLUE score than current practices. Moreover, we perform detailed analysis on our approach and shed light on how ADMM affects fine-tuning accuracy for downstream tasks. Finally, we illustrate how NxMTransformer achieves performance improvement with knowledge distillation.

Abstract (translated)

URL

https://arxiv.org/abs/2110.15766

PDF

https://arxiv.org/pdf/2110.15766.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot