Paper Reading AI Learner

Multi-Task and Multi-Modal Learning for RGB Dynamic Gesture Recognition

2021-10-29 09:22:39
Dinghao Fan, Hengjie Lu, Shugong Xu, Shan Cao

Abstract

Gesture recognition is getting more and more popular due to various application possibilities in human-machine interaction. Existing multi-modal gesture recognition systems take multi-modal data as input to improve accuracy, but such methods require more modality sensors, which will greatly limit their application scenarios. Therefore we propose an end-to-end multi-task learning framework in training 2D convolutional neural networks. The framework can use the depth modality to improve accuracy during training and save costs by using only RGB modality during inference. Our framework is trained to learn a representation for multi-task learning: gesture segmentation and gesture recognition. Depth modality contains the prior information for the location of the gesture. Therefore it can be used as the supervision for gesture segmentation. A plug-and-play module named Multi-Scale-Decoder is designed to realize gesture segmentation, which contains two sub-decoder. It is used in the lower stage and higher stage respectively, and can help the network pay attention to key target areas, ignore irrelevant information, and extract more discriminant features. Additionally, the MSD module and depth modality are only used in the training stage to improve gesture recognition performance. Only RGB modality and network without MSD are required during inference. Experimental results on three public gesture recognition datasets show that our proposed method provides superior performance compared with existing gesture recognition frameworks. Moreover, using the proposed plug-and-play MSD in other 2D CNN-based frameworks also get an excellent accuracy improvement.

Abstract (translated)

URL

https://arxiv.org/abs/2110.15639

PDF

https://arxiv.org/pdf/2110.15639.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot