Paper Reading AI Learner

Gabor filter incorporated CNN for compression

2021-10-29 09:34:39
Akihiro Imamura, Nana Arizumi

Abstract

Convolutional neural networks (CNNs) are remarkably successful in many computer vision tasks. However, the high cost of inference is problematic for embedded and real-time systems, so there are many studies on compressing the networks. On the other hand, recent advances in self-attention models showed that convolution filters are preferable to self-attention in the earlier layers, which indicates that stronger inductive biases are better in the earlier layers. As shown in convolutional filters, strong biases can train specific filters and construct unnecessarily filters to zero. This is analogous to classical image processing tasks, where choosing the suitable filters makes a compact dictionary to represent features. We follow this idea and incorporate Gabor filters in the earlier layers of CNNs for compression. The parameters of Gabor filters are learned through backpropagation, so the features are restricted to Gabor filters. We show that the first layer of VGG-16 for CIFAR-10 has 192 kernels/features, but learning Gabor filters requires an average of 29.4 kernels. Also, using Gabor filters, an average of 83% and 94% of kernels in the first and the second layer, respectively, can be removed on the altered ResNet-20, where the first five layers are exchanged with two layers of larger kernels for CIFAR-10.

Abstract (translated)

URL

https://arxiv.org/abs/2110.15644

PDF

https://arxiv.org/pdf/2110.15644.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot