Paper Reading AI Learner

Graph Tree Neural Networks

2021-10-31 07:58:00
Seokjun Kim, Jaeeun Jang, Hee-seok Jung, Hyeoncheol Kim

Abstract

Graph neural networks (GNNs) have recently shown good performance in various fields. In this paper, we propose graph tree neural networks (GTNNs) designed to solve the problems of existing networks by analyzing the structure of human neural networks. In GTNNs, information units are related to the form of a graph and then they become a bigger unit of information again and have a relationship with other information units. At this point, the unit of information is a set of neurons, and we can express it as a vector with GTNN. Defining the starting and ending points in a single graph is difficult, and a tree cannot express the relationship among sibling nodes. However, a graph tree can be expressed using leaf and root nodes as its starting and ending points and the relationship among sibling nodes. Depth-first convolution (DFC) encodes the interaction result from leaf nodes to the root node in a bottom-up approach, and depth-first deconvolution (DFD) decodes the interaction result from the root node to the leaf nodes in a top-down approach. GTNN is data-driven learning in which the number of convolutions varies according to the depth of the tree. Moreover, learning features of different types together is possible. Supervised, unsupervised, and semi-supervised learning using graph tree recursive neural network (GTR) , graph tree recursive attention networks (GTRAs), and graph tree recursive autoencoders (GTRAEs) are introduced in this paper. We experimented with a simple toy test with source code dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2111.00424

PDF

https://arxiv.org/pdf/2111.00424.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot