Paper Reading AI Learner

Towards Language Modelling in the Speech Domain Using Sub-word Linguistic Units

2021-10-31 22:48:30
Anurag Katakkar, Alan W Black

Abstract

Language models (LMs) for text data have been studied extensively for their usefulness in language generation and other downstream tasks. However, language modelling purely in the speech domain is still a relatively unexplored topic, with traditional speech LMs often depending on auxiliary text LMs for learning distributional aspects of the language. For the English language, these LMs treat words as atomic units, which presents inherent challenges to language modelling in the speech domain. In this paper, we propose a novel LSTM-based generative speech LM that is inspired by the CBOW model and built on linguistic units including syllables and phonemes. This offers better acoustic consistency across utterances in the dataset, as opposed to single melspectrogram frames, or whole words. With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech. We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features. Through our experiments, we also highlight some well known, but poorly documented challenges in training generative speech LMs, including the mismatch between the supervised learning objective with which these models are trained such as Mean Squared Error (MSE), and the true objective, which is speech quality. Our experiments provide an early indication that while validation loss and Mel Cepstral Distortion (MCD) are not strongly correlated with generated speech quality, traditional text language modelling metrics like perplexity and next-token-prediction accuracy might be.

Abstract (translated)

URL

https://arxiv.org/abs/2111.00610

PDF

https://arxiv.org/pdf/2111.00610.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot