Paper Reading AI Learner

MSC-VO: Exploiting Manhattan and Structural Constraints for Visual Odometry

2021-11-05 11:29:52
Joan P. Company-Corcoles, Emilio Garcia-Fidalgo, Alberto Ortiz

Abstract

Visual odometry algorithms tend to degrade when facing low-textured scenes -from e.g. human-made environments-, where it is often difficult to find a sufficient number of point features. Alternative geometrical visual cues, such as lines, which can often be found within these scenarios, can become particularly useful. Moreover, these scenarios typically present structural regularities, such as parallelism or orthogonality, and hold the Manhattan World assumption. Under these premises, in this work, we introduce MSC-VO, an RGB-D -based visual odometry approach that combines both point and line features and leverages, if exist, those structural regularities and the Manhattan axes of the scene. Within our approach, these structural constraints are initially used to estimate accurately the 3D position of the extracted lines. These constraints are also combined next with the estimated Manhattan axes and the reprojection errors of points and lines to refine the camera pose by means of local map optimization. Such a combination enables our approach to operate even in the absence of the aforementioned constraints, allowing the method to work for a wider variety of scenarios. Furthermore, we propose a novel multi-view Manhattan axes estimation procedure that mainly relies on line features. MSC-VO is assessed using several public datasets, outperforming other state-of-the-art solutions, and comparing favourably even with some SLAM methods.

Abstract (translated)

URL

https://arxiv.org/abs/2111.03408

PDF

https://arxiv.org/pdf/2111.03408.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot