Paper Reading AI Learner

How Do Neural Sequence Models Generalize? Local and Global Context Cues for Out-of-Distribution Prediction

2021-11-04 19:08:14
Anthony Bau, Jacob Andreas

Abstract

After a neural sequence model encounters an unexpected token, can its behavior be predicted? We show that RNN and transformer language models exhibit structured, consistent generalization in out-of-distribution contexts. We begin by introducing two idealized models of generalization in next-word prediction: a local context model in which generalization is consistent with the last word observed, and a global context model in which generalization is consistent with the global structure of the input. In experiments in English, Finnish, Mandarin, and random regular languages, we demonstrate that neural language models interpolate between these two forms of generalization: their predictions are well-approximated by a log-linear combination of local and global predictive distributions. We then show that, in some languages, noise mediates the two forms of generalization: noise applied to input tokens encourages global generalization, while noise in history representations encourages local generalization. Finally, we offer a preliminary theoretical explanation of these results by proving that the observed interpolation behavior is expected in log-linear models with a particular feature correlation structure. These results help explain the effectiveness of two popular regularization schemes and show that aspects of sequence model generalization can be understood and controlled.

Abstract (translated)

URL

https://arxiv.org/abs/2111.03108

PDF

https://arxiv.org/pdf/2111.03108.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot