Paper Reading AI Learner

Improving RNA Secondary Structure Design using Deep Reinforcement Learning

2021-11-05 02:54:06
Alexander Whatley, Zhekun Luo, Xiangru Tang

Abstract

Rising costs in recent years of developing new drugs and treatments have led to extensive research in optimization techniques in biomolecular design. Currently, the most widely used approach in biomolecular design is directed evolution, which is a greedy hill-climbing algorithm that simulates biological evolution. In this paper, we propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure. In addition to experimenting with the vanilla implementations of each reinforcement learning algorithm from standard libraries, we analyze variants of each algorithm in which we modify the algorithm's reward function and tune the model's hyperparameters. We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches and its ability to search the possible space of RNA sequences. We find that our DQN algorithm performs by far the best in this setting, contrasting with, in which PPO performs the best among all tested algorithms. Our results should be of interest to those in the biomolecular design community and should serve as a baseline for future experiments involving machine learning in molecule design.

Abstract (translated)

URL

https://arxiv.org/abs/2111.04504

PDF

https://arxiv.org/pdf/2111.04504.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot