Paper Reading AI Learner

Improved Regularization and Robustness for Fine-tuning in Neural Networks

2021-11-08 15:39:44
Dongyue Li, Hongyang R. Zhang

Abstract

A widely used algorithm for transfer learning is fine-tuning, where a pre-trained model is fine-tuned on a target task with a small amount of labeled data. When the capacity of the pre-trained model is much larger than the size of the target data set, fine-tuning is prone to overfitting and "memorizing" the training labels. Hence, an important question is to regularize fine-tuning and ensure its robustness to noise. To address this question, we begin by analyzing the generalization properties of fine-tuning. We present a PAC-Bayes generalization bound that depends on the distance traveled in each layer during fine-tuning and the noise stability of the fine-tuned model. We empirically measure these quantities. Based on the analysis, we propose regularized self-labeling -- the interpolation between regularization and self-labeling methods, including (i) layer-wise regularization to constrain the distance traveled in each layer; (ii) self label-correction and label-reweighting to correct mislabeled data points (that the model is confident) and reweight less confident data points. We validate our approach on an extensive collection of image and text data sets using multiple pre-trained model architectures. Our approach improves baseline methods by 1.76% (on average) for seven image classification tasks and 0.75% for a few-shot classification task. When the target data set includes noisy labels, our approach outperforms baseline methods by 3.56% on average in two noisy settings.

Abstract (translated)

URL

https://arxiv.org/abs/2111.04578

PDF

https://arxiv.org/pdf/2111.04578.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot