Paper Reading AI Learner

'How Does It Detect A Malicious App?' Explaining the Predictions of AI-based Android Malware Detector

2021-11-06 11:25:24
Zhi Lu, Vrizlynn L.L. Thing

Abstract

AI methods have been proven to yield impressive performance on Android malware detection. However, most AI-based methods make predictions of suspicious samples in a black-box manner without transparency on models' inference. The expectation on models' explainability and transparency by cyber security and AI practitioners to assure the trustworthiness increases. In this article, we present a novel model-agnostic explanation method for AI models applied for Android malware detection. Our proposed method identifies and quantifies the data features relevance to the predictions by two steps: i) data perturbation that generates the synthetic data by manipulating features' values; and ii) optimization of features attribution values to seek significant changes of prediction scores on the perturbed data with minimal feature values changes. The proposed method is validated by three experiments. We firstly demonstrate that our proposed model explanation method can aid in discovering how AI models are evaded by adversarial samples quantitatively. In the following experiments, we compare the explainability and fidelity of our proposed method with state-of-the-arts, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2111.05108

PDF

https://arxiv.org/pdf/2111.05108.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot