Paper Reading AI Learner

A Deep Learning Technique using Low Sampling rate for residential Non Intrusive Load Monitoring

2021-11-07 23:01:36
Ronak Aghera, Sahil Chilana, Vishal Garg, Raghunath Reddy

Abstract

Individual device loads and energy consumption feedback is one of the important approaches for pursuing users to save energy in residences. This can help in identifying faulty devices and wasted energy by devices when left On unused. The main challenge is to identity and estimate the energy consumption of individual devices without intrusive sensors on each device. Non-intrusive load monitoring (NILM) or energy disaggregation, is a blind source separation problem which requires a system to estimate the electricity usage of individual appliances from the aggregated household energy consumption. In this paper, we propose a novel deep neural network-based approach for performing load disaggregation on low frequency power data obtained from residential households. We combine a series of one-dimensional Convolutional Neural Networks and Long Short Term Memory (1D CNN-LSTM) to extract features that can identify active appliances and retrieve their power consumption given the aggregated household power value. We used CNNs to extract features from main readings in a given time frame and then used those features to classify if a given appliance is active at that time period or not. Following that, the extracted features are used to model a generation problem using LSTM. We train the LSTM to generate the disaggregated energy consumption of a particular appliance. Our neural network is capable of generating detailed feedback of demand-side, providing vital insights to the end-user about their electricity consumption. The algorithm was designed for low power offline devices such as ESP32. Empirical calculations show that our model outperforms the state-of-the-art on the Reference Energy Disaggregation Dataset (REDD).

Abstract (translated)

URL

https://arxiv.org/abs/2111.05120

PDF

https://arxiv.org/pdf/2111.05120.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot