Paper Reading AI Learner

Causal Regularization Using Domain Priors

2021-11-24 13:38:24
Abbavaram Gowtham Reddy, Sai Srinivas Kancheti, Vineeth N Balasubramanian, Amit Sharma

Abstract

Neural networks leverage both causal and correlation-based relationships in data to learn models that optimize a given performance criterion, such as classification accuracy. This results in learned models that may not necessarily reflect the true causal relationships between input and output. When domain priors of causal relationships are available at the time of training, it is essential that a neural network model maintains these relationships as causal, even as it learns to optimize the performance criterion. We propose a causal regularization method that can incorporate such causal domain priors into the network and which supports both direct and total causal effects. We show that this approach can generalize to various kinds of specifications of causal priors, including monotonicity of causal effect of a given input feature or removing a certain influence for purposes of fairness. Our experiments on eleven benchmark datasets show the usefulness of this approach in regularizing a learned neural network model to maintain desired causal effects. On most datasets, domain-prior consistent models can be obtained without compromising on accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2111.12490

PDF

https://arxiv.org/pdf/2111.12490.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot