We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: this https URL.
https://arxiv.org/abs/2412.02699
Visual anagrams are images that change appearance upon transformation, like flipping or rotation. With the advent of diffusion models, generating such optical illusions can be achieved by averaging noise across multiple views during the reverse denoising process. However, we observe two critical failure modes in this approach: (i) concept segregation, where concepts in different views are independently generated, which can not be considered a true anagram, and (ii) concept domination, where certain concepts overpower others. In this work, we cast the visual anagram generation problem in a multi-task learning setting, where different viewpoint prompts are analogous to different tasks,and derive denoising trajectories that align well across tasks simultaneously. At the core of our designed framework are two newly introduced techniques, where (i) an anti-segregation optimization strategy that promotes overlap in cross-attention maps between different concepts, and (ii) a noise vector balancing method that adaptively adjusts the influence of different tasks. Additionally, we observe that directly averaging noise predictions yields suboptimal performance because statistical properties may not be preserved, prompting us to derive a noise variance rectification method. Extensive qualitative and quantitative experiments demonstrate our method's superior ability to generate visual anagrams spanning diverse concepts.
https://arxiv.org/abs/2412.02693
The end-to-end autonomous driving paradigm has recently attracted lots of attention due to its scalability. However, existing methods are constrained by the limited scale of real-world data, which hinders a comprehensive exploration of the scaling laws associated with end-to-end autonomous driving. To address this issue, we collected substantial data from various driving scenarios and behaviors and conducted an extensive study on the scaling laws of existing imitation learning-based end-to-end autonomous driving paradigms. Specifically, approximately 4 million demonstrations from 23 different scenario types were gathered, amounting to over 30,000 hours of driving demonstrations. We performed open-loop evaluations and closed-loop simulation evaluations in 1,400 diverse driving demonstrations (1,300 for open-loop and 100 for closed-loop) under stringent assessment conditions. Through experimental analysis, we discovered that (1) the performance of the driving model exhibits a power-law relationship with the amount of training data; (2) a small increase in the quantity of long-tailed data can significantly improve the performance for the corresponding scenarios; (3) appropriate scaling of data enables the model to achieve combinatorial generalization in novel scenes and actions. Our results highlight the critical role of data scaling in improving the generalizability of models across diverse autonomous driving scenarios, assuring safe deployment in the real world. Project repository: this https URL
https://arxiv.org/abs/2412.02689
Recent approaches have yielded promising results in distilling multi-step text-to-image diffusion models into one-step ones. The state-of-the-art efficient distillation technique, i.e., SwiftBrushv2 (SBv2), even surpasses the teacher model's performance with limited resources. However, our study reveals its instability when handling different diffusion model backbones due to using a fixed guidance scale within the Variational Score Distillation (VSD) loss. Another weakness of the existing one-step diffusion models is the missing support for negative prompt guidance, which is crucial in practical image generation. This paper presents SNOOPI, a novel framework designed to address these limitations by enhancing the guidance in one-step diffusion models during both training and inference. First, we effectively enhance training stability through Proper Guidance-SwiftBrush (PG-SB), which employs a random-scale classifier-free guidance approach. By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance. Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images. Our experimental results show that our proposed methods significantly improve baseline models across various metrics. Remarkably, we achieve an HPSv2 score of 31.08, setting a new state-of-the-art benchmark for one-step diffusion models.
https://arxiv.org/abs/2412.02687
A key component of transformers is the attention mechanism orchestrating how each token influences the propagation of every other token through a transformer. In this paper we provide a rigorous, mathematical analysis of the asymptotic properties of attention in transformers. Although we present several results based on different assumptions, all of them point to the same conclusion, all tokens asymptotically converge to each other, a phenomenon that has been empirically reported in the literature. Our findings are carefully compared with existing theoretical results and illustrated by simulations and experimental studies using the GPT-2 model.
https://arxiv.org/abs/2412.02682
Retrieval-Augmented Generation (RAG) architectures have recently garnered significant attention for their ability to improve truth grounding and coherence in natural language processing tasks. However, the reliability of RAG systems in producing accurate answers diminishes as the volume of data they access increases. Even with smaller datasets, these systems occasionally fail to address simple queries. This issue arises from their dependence on state-of-the-art large language models (LLMs), which can introduce uncertainty into the system's outputs. In this work, I propose a novel Comparative RAG system that introduces an evaluator module to bridge the gap between probabilistic RAG systems and deterministically verifiable responses. The evaluator compares external recommendations with the retrieved document chunks, adding a decision-making layer that enhances the system's reliability. This approach ensures that the chunks retrieved are both semantically relevant and logically consistent with deterministic insights, thereby improving the accuracy and overall efficiency of RAG systems. This framework paves the way for more reliable and scalable question-answering applications in domains requiring high precision and verifiability.
https://arxiv.org/abs/2412.02563
Shadows introduce challenges such as reduced brightness, texture deterioration, and color distortion in images, complicating a holistic solution. This study presents \textbf{ShadowHack}, a divide-and-conquer strategy that tackles these complexities by decomposing the original task into luminance recovery and color remedy. To brighten shadow regions and repair the corrupted textures in the luminance space, we customize LRNet, a U-shaped network with a rectified outreach attention module, to enhance information interaction and recalibrate contaminated attention maps. With luminance recovered, CRNet then leverages cross-attention mechanisms to revive vibrant colors, producing visually compelling results. Extensive experiments on multiple datasets are conducted to demonstrate the superiority of ShadowHack over existing state-of-the-art solutions both quantitatively and qualitatively, highlighting the effectiveness of our design. Our code will be made publicly available at this https URL
https://arxiv.org/abs/2412.02545
The network of services, including delivery, farming, and environmental monitoring, has experienced exponential expansion in the past decade with Unmanned Aerial Vehicles (UAVs). Yet, UAVs are not robust enough against cyberattacks, especially on the Controller Area Network (CAN) bus. The CAN bus is a general-purpose vehicle-bus standard to enable microcontrollers and in-vehicle computers to interact, primarily connecting different Electronic Control Units (ECUs). In this study, we focus on solving some of the most critical security weaknesses in UAVs by developing a novel graph-based intrusion detection system (IDS) leveraging the Uncomplicated Application-level Vehicular Communication and Networking (UAVCAN) protocol. First, we decode CAN messages based on UAVCAN protocol specification; second, we present a comprehensive method of transforming tabular UAVCAN messages into graph structures. Lastly, we apply various graph-based machine learning models for detecting cyber-attacks on the CAN bus, including graph convolutional neural networks (GCNNs), graph attention networks (GATs), Graph Sample and Aggregate Networks (GraphSAGE), and graph structure-based transformers. Our findings show that inductive models such as GATs, GraphSAGE, and graph-based transformers can achieve competitive and even better accuracy than transductive models like GCNNs in detecting various types of intrusions, with minimum information on protocol specification, thus providing a generic robust solution for CAN bus security for the UAVs. We also compared our results with baseline single-layer Long Short-Term Memory (LSTM) and found that all our graph-based models perform better without using any decoded features based on the UAVCAN protocol, highlighting higher detection performance with protocol-independent capability.
https://arxiv.org/abs/2412.02539
Recent advances in multimodal models have demonstrated impressive capabilities in object recognition and scene understanding. However, these models often struggle with precise spatial localization - a critical capability for real-world applications. Inspired by how humans use grid-based references like chess boards and maps, we propose introducing explicit visual position encoding through a simple grid overlay approach. By adding a 9x9 black grid pattern onto input images, our method provides visual spatial guidance analogous to how positional encoding works in transformers, but in an explicit, visual form. Experiments on the COCO 2017 dataset demonstrate that our grid-based approach achieves significant improvements in localization accuracy, with a 107.4% increase in IoU (from 0.27 to 0.56) and a 194.4% improvement in GIoU (from 0.18 to 0.53) compared to baseline performance. Through attention visualization analysis, we show how this visual position encoding helps models better ground spatial relationships. Our method's simplicity and effectiveness make it particularly valuable for applications requiring accurate spatial reasoning, such as robotic manipulation, medical imaging, and autonomous navigation.
https://arxiv.org/abs/2411.18270
Remote sensing scene classification (RSSC) is a critical task with diverse applications in land use and resource management. While unimodal image-based approaches show promise, they often struggle with limitations such as high intra-class variance and inter-class similarity. Incorporating textual information can enhance classification by providing additional context and semantic understanding, but manual text annotation is labor-intensive and costly. In this work, we propose a novel RSSC framework that integrates text descriptions generated by large vision-language models (VLMs) as an auxiliary modality without incurring expensive manual annotation costs. To fully leverage the latent complementarities between visual and textual data, we propose a dual cross-attention-based network to fuse these modalities into a unified representation. Extensive experiments with both quantitative and qualitative evaluation across five RSSC datasets demonstrate that our framework consistently outperforms baseline models. We also verify the effectiveness of VLM-generated text descriptions compared to human-annotated descriptions. Additionally, we design a zero-shot classification scenario to show that the learned multimodal representation can be effectively utilized for unseen class classification. This research opens new opportunities for leveraging textual information in RSSC tasks and provides a promising multimodal fusion structure, offering insights and inspiration for future studies. Code is available at: this https URL
https://arxiv.org/abs/2412.02531
Continual Learning (CL) involves adapting the prior Deep Neural Network (DNN) knowledge to new tasks, without forgetting the old ones. However, modern CL techniques focus on provisioning memory capabilities to existing DNN models rather than designing new ones that are able to adapt according to the task at hand. This paper presents the novel Feedback Continual Learning Vision Transformer (FCL-ViT) that uses a feedback mechanism to generate real-time dynamic attention features tailored to the current task. The FCL-ViT operates in two Phases. In phase 1, the generic image features are produced and determine where the Transformer should attend on the current image. In phase 2, task-specific image features are generated that leverage dynamic attention. To this end, Tunable self-Attention Blocks (TABs) and Task Specific Blocks (TSBs) are introduced that operate in both phases and are responsible for tuning the TABs attention, respectively. The FCL-ViT surpasses state-of-the-art performance on Continual Learning compared to benchmark methods, while retaining a small number of trainable DNN parameters.
https://arxiv.org/abs/2412.02509
Producing emotionally dynamic 3D facial avatars with text derived from spoken words (Emo3D) has been a pivotal research topic in 3D avatar generation. While progress has been made in general-purpose 3D avatar generation, the exploration of generating emotional 3D avatars remains scarce, primarily due to the complexities of identifying and rendering rich emotions from spoken words. This paper reexamines Emo3D generation and draws inspiration from human processes, breaking down Emo3D into two cascading steps: Text-to-3D Expression Mapping (T3DEM) and 3D Avatar Rendering (3DAR). T3DEM is the most crucial step in determining the quality of Emo3D generation and encompasses three key challenges: Expression Diversity, Emotion-Content Consistency, and Expression Fluidity. To address these challenges, we introduce a novel benchmark to advance research in Emo3D generation. First, we present EmoAva, a large-scale, high-quality dataset for T3DEM, comprising 15,000 text-to-3D expression mappings that characterize the aforementioned three challenges in Emo3D generation. Furthermore, we develop various metrics to effectively evaluate models against these identified challenges. Next, to effectively model the consistency, diversity, and fluidity of human expressions in the T3DEM step, we propose the Continuous Text-to-Expression Generator, which employs an autoregressive Conditional Variational Autoencoder for expression code generation, enhanced with Latent Temporal Attention and Expression-wise Attention mechanisms. Finally, to further enhance the 3DAR step on rendering higher-quality subtle expressions, we present the Globally-informed Gaussian Avatar (GiGA) model. GiGA incorporates a global information mechanism into 3D Gaussian representations, enabling the capture of subtle micro-expressions and seamless transitions between emotional states.
https://arxiv.org/abs/2412.02508
Learning to forecast the trajectories of intelligent agents like pedestrians has caught more researchers' attention. Despite researchers' efforts, it remains a challenge to accurately account for social interactions among agents when forecasting, and in particular, to simulate such social modifications to future trajectories in an explainable and decoupled way. Inspired by the resonance phenomenon of vibration systems, we propose the Resonance (short for Re) model to forecast pedestrian trajectories as co-vibrations, and regard that social interactions are associated with spectral properties of agents' trajectories. It forecasts future trajectories as three distinct vibration terms to represent agents' future plans from different perspectives in a decoupled way. Also, agents' social interactions and how they modify scheduled trajectories will be considered in a resonance-like manner by learning the similarities of their trajectory spectrums. Experiments on multiple datasets, whether pedestrian or vehicle, have verified the usefulness of our method both quantitatively and qualitatively.
https://arxiv.org/abs/2412.02447
Colorectal polyps are structural abnormalities of the gastrointestinal tract that can potentially become cancerous in some cases. The study introduces a novel framework for colorectal polyp segmentation named the Multi-Scale and Multi-Path Cascaded Convolution Network (MMCC-Net), aimed at addressing the limitations of existing models, such as inadequate spatial dependence representation and the absence of multi-level feature integration during the decoding stage by integrating multi-scale and multi-path cascaded convolutional techniques and enhances feature aggregation through dual attention modules, skip connections, and a feature enhancer. MMCC-Net achieves superior performance in identifying polyp areas at the pixel level. The Proposed MMCC-Net was tested across six public datasets and compared against eight SOTA models to demonstrate its efficiency in polyp segmentation. The MMCC-Net's performance shows Dice scores with confidence intervals ranging between (77.08, 77.56) and (94.19, 94.71) and Mean Intersection over Union (MIoU) scores with confidence intervals ranging from (72.20, 73.00) to (89.69, 90.53) on the six databases. These results highlight the model's potential as a powerful tool for accurate and efficient polyp segmentation, contributing to early detection and prevention strategies in colorectal cancer.
https://arxiv.org/abs/2412.02443
The 3D reconstruction of faces gains wide attention in computer vision and is used in many fields of application, for example, animation, virtual reality, and even forensics. This work is motivated by monitoring patients in sleep laboratories. Due to their unique characteristics, sensors from the radar domain have advantages compared to optical sensors, namely penetration of electrically non-conductive materials and independence of light. These advantages of radar signals unlock new applications and require adaptation of 3D reconstruction frameworks. We propose a novel model-based method for 3D reconstruction from radar images. We generate a dataset of synthetic radar images with a physics-based but non-differentiable radar renderer. This dataset is used to train a CNN-based encoder to estimate the parameters of a 3D morphable face model. Whilst the encoder alone already leads to strong reconstructions of synthetic data, we extend our reconstruction in an Analysis-by-Synthesis fashion to a model-based autoencoder. This is enabled by learning the rendering process in the decoder, which acts as an object-specific differentiable radar renderer. Subsequently, the combination of both network parts is trained to minimize both, the loss of the parameters and the loss of the resulting reconstructed radar image. This leads to the additional benefit, that at test time the parameters can be further optimized by finetuning the autoencoder unsupervised on the image loss. We evaluated our framework on generated synthetic face images as well as on real radar images with 3D ground truth of four individuals.
https://arxiv.org/abs/2412.02403
Deep supervised learning has achieved remarkable success across a wide range of tasks, yet it remains susceptible to overfitting when confronted with noisy labels. To address this issue, noise-robust loss functions offer an effective solution for enhancing learning in the presence of label noise. In this work, we systematically investigate the limitation of the recently proposed Active Passive Loss (APL), which employs Mean Absolute Error (MAE) as its passive loss function. Despite the robustness brought by MAE, one of its key drawbacks is that it pays equal attention to clean and noisy samples; this feature slows down convergence and potentially makes training difficult, particularly in large-scale datasets. To overcome these challenges, we introduce a novel loss function class, termed Normalized Negative Loss Functions (NNLFs), which serve as passive loss functions within the APL framework. NNLFs effectively address the limitations of MAE by concentrating more on memorized clean samples. By replacing MAE in APL with our proposed NNLFs, we enhance APL and present a new framework called Active Negative Loss (ANL). Moreover, in non-symmetric noise scenarios, we propose an entropy-based regularization technique to mitigate the vulnerability to the label imbalance. Extensive experiments demonstrate that the new loss functions adopted by our ANL framework can achieve better or comparable performance to state-of-the-art methods across various label noise types and in image segmentation tasks. The source code is available at: this https URL.
https://arxiv.org/abs/2412.02373
Language models based on deep neural networks are vulnerable to textual adversarial attacks. While rich-resource languages like English are receiving focused attention, Tibetan, a cross-border language, is gradually being studied due to its abundant ancient literature and critical language strategy. Currently, there are several Tibetan adversarial text generation methods, but they do not fully consider the textual features of Tibetan script and overestimate the quality of generated adversarial texts. To address this issue, we propose a novel Tibetan adversarial text generation method called TSCheater, which considers the characteristic of Tibetan encoding and the feature that visually similar syllables have similar semantics. This method can also be transferred to other abugidas, such as Devanagari script. We utilize a self-constructed Tibetan syllable visual similarity database called TSVSDB to generate substitution candidates and adopt a greedy algorithm-based scoring mechanism to determine substitution order. After that, we conduct the method on eight victim language models. Experimentally, TSCheater outperforms existing methods in attack effectiveness, perturbation magnitude, semantic similarity, visual similarity, and human acceptance. Finally, we construct the first Tibetan adversarial robustness evaluation benchmark called AdvTS, which is generated by existing methods and proofread by humans.
https://arxiv.org/abs/2412.02371
Transformer-based architectures have demonstrated remarkable success across various domains, but their deployment on edge devices remains challenging due to high memory and computational demands. In this paper, we introduce a novel Reuse Attention mechanism, tailored for efficient memory access and computational optimization, enabling seamless operation on resource-constrained platforms without compromising performance. Unlike traditional multi-head attention (MHA), which redundantly computes separate attention matrices for each head, Reuse Attention consolidates these computations into a shared attention matrix, significantly reducing memory overhead and computational complexity. Comprehensive experiments on ImageNet-1K and downstream tasks show that the proposed UniForm models leveraging Reuse Attention achieve state-of-the-art imagenet classification accuracy while outperforming existing attention mechanisms, such as Linear Attention and Flash Attention, in inference speed and memory scalability. Notably, UniForm-l achieves a 76.7% Top-1 accuracy on ImageNet-1K with 21.8ms inference time on edge devices like the Jetson AGX Orin, representing up to a 5x speedup over competing benchmark methods. These results demonstrate the versatility of Reuse Attention across high-performance GPUs and edge platforms, paving the way for broader real-time applications
https://arxiv.org/abs/2412.02344
The textual adversarial attack refers to an attack method in which the attacker adds imperceptible perturbations to the original texts by elaborate design so that the NLP (natural language processing) model produces false judgments. This method is also used to evaluate the robustness of NLP models. Currently, most of the research in this field focuses on English, and there is also a certain amount of research on Chinese. However, to the best of our knowledge, there is little research targeting Chinese minority languages. Textual adversarial attacks are a new challenge for the information processing of Chinese minority languages. In response to this situation, we propose a Tibetan syllable-level black-box textual adversarial attack called TSAttacker based on syllable cosine distance and scoring mechanism. And then, we conduct TSAttacker on six models generated by fine-tuning two PLMs (pre-trained language models) for three downstream tasks. The experiment results show that TSAttacker is effective and generates high-quality adversarial samples. In addition, the robustness of the involved models still has much room for improvement.
https://arxiv.org/abs/2412.02323
With the rapid evolution of 3D generation algorithms, the cost of producing 3D humanoid character models has plummeted, yet the field is impeded by the lack of a comprehensive dataset for automatic rigging, which is a pivotal step in character animation. Addressing this gap, we present HumanRig, the first large-scale dataset specifically designed for 3D humanoid character rigging, encompassing 11,434 meticulously curated T-posed meshes adhered to a uniform skeleton topology. Capitalizing on this dataset, we introduce an innovative, data-driven automatic rigging framework, which overcomes the limitations of GNN-based methods in handling complex AI-generated meshes. Our approach integrates a Prior-Guided Skeleton Estimator (PGSE) module, which uses 2D skeleton joints to provide a preliminary 3D skeleton, and a Mesh-Skeleton Mutual Attention Network (MSMAN) that fuses skeleton features with 3D mesh features extracted by a U-shaped point transformer. This enables a coarse-to-fine 3D skeleton joint regression and a robust skinning estimation, surpassing previous methods in quality and versatility. This work not only remedies the dataset deficiency in rigging research but also propels the animation industry towards more efficient and automated character rigging pipelines.
https://arxiv.org/abs/2412.02317