Paper Reading AI Learner

Representing Knowledge as Predictions

2021-12-12 22:11:14
Mark Ring

Abstract

This paper shows how a single mechanism allows knowledge to be constructed layer by layer directly from an agent's raw sensorimotor stream. This mechanism, the General Value Function (GVF) or "forecast," captures high-level, abstract knowledge as a set of predictions about existing features and knowledge, based exclusively on the agent's low-level senses and actions. Thus, forecasts provide a representation for organizing raw sensorimotor data into useful abstractions over an unlimited number of layers--a long-sought goal of AI and cognitive science. The heart of this paper is a detailed thought experiment providing a concrete, step-by-step formal illustration of how an artificial agent can build true, useful, abstract knowledge from its raw sensorimotor experience alone. The knowledge is represented as a set of layered predictions (forecasts) about the agent's observed consequences of its actions. This illustration shows twelve separate layers: the lowest consisting of raw pixels, touch and force sensors, and a small number of actions; the higher layers increasing in abstraction, eventually resulting in rich knowledge about the agent's world, corresponding roughly to doorways, walls, rooms, and floor plans. I then argue that this general mechanism may allow the representation of a broad spectrum of everyday human knowledge.

Abstract (translated)

URL

https://arxiv.org/abs/2112.06336

PDF

https://arxiv.org/pdf/2112.06336.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot