Paper Reading AI Learner

Black-Box Testing of Deep Neural Networks through Test Case Diversity

2021-12-20 20:12:53
Zohreh Aghababaeyan, Manel Abdellatif, Lionel Briand, Ramesh S, Mojtaba Bagherzadeh

Abstract

Deep Neural Networks (DNNs) have been extensively used in many areas including image processing, medical diagnostics, and autonomous driving. However, DNNs can exhibit erroneous behaviours that may lead to critical errors, especially when used in safety-critical systems. Inspired by testing techniques for traditional software systems, researchers have proposed neuron coverage criteria, as an analogy to source code coverage, to guide the testing of DNN models. Despite very active research on DNN coverage, several recent studies have questioned the usefulness of such criteria in guiding DNN testing. Further, from a practical standpoint, these criteria are white-box as they require access to the internals or training data of DNN models, which is in many contexts not feasible or convenient. In this paper, we investigate black-box input diversity metrics as an alternative to white-box coverage criteria. To this end, we first select and adapt three diversity metrics and study, in a controlled manner, their capacity to measure actual diversity in input sets. We then analyse their statistical association with fault detection using two datasets and three DNN models. We further compare diversity with state-of-the-art white-box coverage criteria. Our experiments show that relying on the diversity of image features embedded in test input sets is a more reliable indicator than coverage criteria to effectively guide the testing of DNNs. Indeed, we found that one of our selected black-box diversity metrics far outperforms existing coverage criteria in terms of fault-revealing capability and computational time. Results also confirm the suspicions that state-of-the-art coverage metrics are not adequate to guide the construction of test input sets to detect as many faults as possible with natural inputs.

Abstract (translated)

URL

https://arxiv.org/abs/2112.12591

PDF

https://arxiv.org/pdf/2112.12591.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot