Paper Reading AI Learner

Multi-echelon Supply Chains with Uncertain Seasonal Demands and Lead Times Using Deep Reinforcement Learning

2022-01-12 19:03:07
Julio César Alves, Geraldo Robson Mateus

Abstract

We address the problem of production planning and distribution in multi-echelon supply chains. We consider uncertain demands and lead times which makes the problem stochastic and non-linear. A Markov Decision Process formulation and a Non-linear Programming model are presented. As a sequential decision-making problem, Deep Reinforcement Learning (RL) is a possible solution approach. This type of technique has gained a lot of attention from Artificial Intelligence and Optimization communities in recent years. Considering the good results obtained with Deep RL approaches in different areas there is a growing interest in applying them in problems from the Operations Research field. We have used a Deep RL technique, namely Proximal Policy Optimization (PPO2), to solve the problem considering uncertain, regular and seasonal demands and constant or stochastic lead times. Experiments are carried out in different scenarios to better assess the suitability of the algorithm. An agent based on a linearized model is used as a baseline. Experimental results indicate that PPO2 is a competitive and adequate tool for this type of problem. PPO2 agent is better than baseline in all scenarios with stochastic lead times (7.3-11.2%), regardless of whether demands are seasonal or not. In scenarios with constant lead times, the PPO2 agent is better when uncertain demands are non-seasonal (2.2-4.7%). The results show that the greater the uncertainty of the scenario, the greater the viability of this type of approach.

Abstract (translated)

URL

https://arxiv.org/abs/2201.04651

PDF

https://arxiv.org/pdf/2201.04651.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot