Paper Reading AI Learner

Hyperplane bounds for neural feature mappings

2022-01-15 09:11:54
Antonio Jimeno Yepes

Abstract

Deep learning methods minimise the empirical risk using loss functions such as the cross entropy loss. When minimising the empirical risk, the generalisation of the learnt function still depends on the performance on the training data, the Vapnik-Chervonenkis(VC)-dimension of the function and the number of training examples. Neural networks have a large number of parameters, which correlates with their VC-dimension that is typically large but not infinite, and typically a large number of training instances are needed to effectively train them. In this work, we explore how to optimize feature mappings using neural network with the intention to reduce the effective VC-dimension of the hyperplane found in the space generated by the mapping. An interpretation of the results of this study is that it is possible to define a loss that controls the VC-dimension of the separating hyperplane. We evaluate this approach and observe that the performance when using this method improves when the size of the training set is small.

Abstract (translated)

URL

https://arxiv.org/abs/2201.05799

PDF

https://arxiv.org/pdf/2201.05799.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot