Paper Reading AI Learner

Continual Coarse-to-Fine Domain Adaptation in Semantic Segmentation

2022-01-18 13:31:19
Donald Shenaj, Francesco Barbato, Umberto Michieli, Pietro Zanuttigh

Abstract

Deep neural networks are typically trained in a single shot for a specific task and data distribution, but in real world settings both the task and the domain of application can change. The problem becomes even more challenging in dense predictive tasks, such as semantic segmentation, and furthermore most approaches tackle the two problems separately. In this paper we introduce the novel task of coarse-to-fine learning of semantic segmentation architectures in presence of domain shift. We consider subsequent learning stages progressively refining the task at the semantic level; i.e., the finer set of semantic labels at each learning step is hierarchically derived from the coarser set of the previous step. We propose a new approach (CCDA) to tackle this scenario. First, we employ the maximum squares loss to align source and target domains and, at the same time, to balance the gradients between well-classified and harder samples. Second, we introduce a novel coarse-to-fine knowledge distillation constraint to transfer network capabilities acquired on a coarser set of labels to a set of finer labels. Finally, we design a coarse-to-fine weight initialization rule to spread the importance from each coarse class to the respective finer classes. To evaluate our approach, we design two benchmarks where source knowledge is extracted from the GTA5 dataset and it is transferred to either the Cityscapes or the IDD datasets, and we show how it outperforms the main competitors.

Abstract (translated)

URL

https://arxiv.org/abs/2201.06974

PDF

https://arxiv.org/pdf/2201.06974.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot