Paper Reading AI Learner

Multi-agent Covering Option Discovery based on Kronecker Product of Factor Graphs

2022-01-20 15:33:08
Jiayu Chen, Jingdi Chen, Tian Lan, Vaneet Aggarwal

Abstract

Covering option discovery has been developed to improve the exploration of reinforcement learning in single-agent scenarios with sparse reward signals, through connecting the most distant states in the embedding space provided by the Fiedler vector of the state transition graph. However, these option discovery methods cannot be directly extended to multi-agent scenarios, since the joint state space grows exponentially with the number of agents in the system. Thus, existing researches on adopting options in multi-agent scenarios still rely on single-agent option discovery and fail to directly discover the joint options that can improve the connectivity of the joint state space of agents. In this paper, we show that it is indeed possible to directly compute multi-agent options with collaborative exploratory behaviors among the agents, while still enjoying the ease of decomposition. Our key idea is to approximate the joint state space as a Kronecker graph -- the Kronecker product of individual agents' state transition graphs, based on which we can directly estimate the Fiedler vector of the joint state space using the Laplacian spectrum of individual agents' transition graphs. This decomposition enables us to efficiently construct multi-agent joint options by encouraging agents to connect the sub-goal joint states which are corresponding to the minimum or maximum values of the estimated joint Fiedler vector. The evaluation based on multi-agent collaborative tasks shows that the proposed algorithm can successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options, in terms of both faster exploration and higher cumulative rewards.

Abstract (translated)

URL

https://arxiv.org/abs/2201.08227

PDF

https://arxiv.org/pdf/2201.08227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot