Paper Reading AI Learner

Identifying Self-Admitted Technical Debt in Issue Tracking Systems using Machine Learning

2022-02-04 15:15:13
Yikun Li, Mohamed Soliman, Paris Avgeriou

Abstract

Technical debt is a metaphor indicating sub-optimal solutions implemented for short-term benefits by sacrificing the long-term maintainability and evolvability of software. A special type of technical debt is explicitly admitted by software engineers (e.g. using a TODO comment); this is called Self-Admitted Technical Debt or SATD. Most work on automatically identifying SATD focuses on source code comments. In addition to source code comments, issue tracking systems have shown to be another rich source of SATD, but there are no approaches specifically for automatically identifying SATD in issues. In this paper, we first create a training dataset by collecting and manually analyzing 4,200 issues (that break down to 23,180 sections of issues) from seven open-source projects (i.e., Camel, Chromium, Gerrit, Hadoop, HBase, Impala, and Thrift) using two popular issue tracking systems (i.e., Jira and Google Monorail). We then propose and optimize an approach for automatically identifying SATD in issue tracking systems using machine learning. Our findings indicate that: 1) our approach outperforms baseline approaches by a wide margin with regard to the F1-score; 2) transferring knowledge from suitable datasets can improve the predictive performance of our approach; 3) extracted SATD keywords are intuitive and potentially indicating types and indicators of SATD; 4) projects using different issue tracking systems have less common SATD keywords compared to projects using the same issue tracking system; 5) a small amount of training data is needed to achieve good accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2202.02180

PDF

https://arxiv.org/pdf/2202.02180.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot