Paper Reading AI Learner

How to Manage Tiny Machine Learning at Scale: An Industrial Perspective

2022-02-18 10:36:11
Haoyu Ren, Darko Anicic, Thomas Runkler

Abstract

Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers, processing sensor data everywhere in real-time. To manage TinyML in the industry, where mass deployment happens, we consider the hardware and software constraints, ranging from available onboard sensors and memory size to ML-model architectures and runtime platforms. However, Internet of Things (IoT) devices are typically tailored to specific tasks and are subject to heterogeneity and limited resources. Moreover, TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles, leading to a fragmented ecosystem. Considering these challenges, we propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale, from modeling information to discovering possible combinations and benchmarking, and eventually facilitate TinyML component exchange and reuse. We present an ontology (semantic schema) for neural network models aligned with the World Wide Web Consortium (W3C) Thing Description, which semantically describes IoT devices. Furthermore, a Knowledge Graph of 23 publicly available ML models and six IoT devices were used to demonstrate our concept in three case studies, and we shared the code and examples to enhance reproducibility: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2202.09113

PDF

https://arxiv.org/pdf/2202.09113.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot