Paper Reading AI Learner

Study of Feature Importance for Quantum Machine Learning Models

2022-02-18 15:21:47
Aaron Baughman, Kavitha Yogaraj, Raja Hebbar, Sudeep Ghosh, Rukhsan Ul Haq, Yoshika Chhabra

Abstract

Predictor importance is a crucial part of data preprocessing pipelines in classical and quantum machine learning (QML). This work presents the first study of its kind in which feature importance for QML models has been explored and contrasted against their classical machine learning (CML) equivalents. We developed a hybrid quantum-classical architecture where QML models are trained and feature importance values are calculated from classical algorithms on a real-world dataset. This architecture has been implemented on ESPN Fantasy Football data using Qiskit statevector simulators and IBM quantum hardware such as the IBMQ Mumbai and IBMQ Montreal systems. Even though we are in the Noisy Intermediate-Scale Quantum (NISQ) era, the physical quantum computing results are promising. To facilitate current quantum scale, we created a data tiering, model aggregation, and novel validation methods. Notably, the feature importance magnitudes from the quantum models had a much higher variation when contrasted to classical models. We can show that equivalent QML and CML models are complementary through diversity measurements. The diversity between QML and CML demonstrates that both approaches can contribute to a solution in different ways. Within this paper we focus on Quantum Support Vector Classifiers (QSVC), Variational Quantum Circuit (VQC), and their classical counterparts. The ESPN and IBM fantasy footballs Trade Assistant combines advanced statistical analysis with the natural language processing of Watson Discovery to serve up personalized trade recommendations that are fair and proposes a trade. Here, player valuation data of each player has been considered and this work can be extended to calculate the feature importance of other QML models such as Quantum Boltzmann machines.

Abstract (translated)

URL

https://arxiv.org/abs/2202.11204

PDF

https://arxiv.org/pdf/2202.11204.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot