Paper Reading AI Learner

A Typology to Explore and Guide Explanatory Interactive Machine Learning

2022-03-04 14:16:50
Felix Friedrich, Wolfgang Stammer, Patrick Schramowski, Kristian Kersting

Abstract

Recently, more and more eXplanatory Interactive machine Learning (XIL) methods have been proposed with the goal of extending a model's learning process by integrating human user supervision on the model's explanations. These methods were often developed independently, provide different motivations and stem from different applications. Notably, up to now, there has not been a comprehensive evaluation of these works. By identifying a common set of basic modules and providing a thorough discussion of these modules, our work, for the first time, comes up with a unification of the various methods into a single typology. This typology can thus be used to categorize existing and future XIL methods based on the identified modules. Moreover, our work contributes by surveying six existing XIL methods. In addition to benchmarking these methods on their overall ability to revise a model, we perform additional benchmarks regarding wrong reason revision, interaction efficiency, robustness to feedback quality, and the ability to revise a strongly corrupted model. Apart from introducing these novel benchmarking tasks, for improved quantitative evaluations, we further introduce a novel Wrong Reason (\wrnospace) metric which measures the average wrong reason activation in a model's explanations to complement a qualitative inspection. In our evaluations, all methods prove to revise a model successfully. However, we found significant differences between the methods on individual benchmark tasks, revealing valuable application-relevant aspects not only for comparing current methods but also to motivate the necessity of incorporating these benchmarks in the development of future XIL methods.

Abstract (translated)

URL

https://arxiv.org/abs/2203.03668

PDF

https://arxiv.org/pdf/2203.03668.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot