Paper Reading AI Learner

Towards Robust Semantic Segmentation of Accident Scenes via Multi-Source Mixed Sampling and Meta-Learning

2022-03-19 21:18:54
Xinyu Luo, Jiaming Zhang, Kailun Yang, Alina Roitberg, Kunyu Peng, Rainer Stiefelhagen

Abstract

Autonomous vehicles utilize urban scene segmentation to understand the real world like a human and react accordingly. Semantic segmentation of normal scenes has experienced a remarkable rise in accuracy on conventional benchmarks. However, a significant portion of real-life accidents features abnormal scenes, such as those with object deformations, overturns, and unexpected traffic behaviors. Since even small mis-segmentation of driving scenes can lead to serious threats to human lives, the robustness of such models in accident scenarios is an extremely important factor in ensuring safety of intelligent transportation systems. In this paper, we propose a Multi-source Meta-learning Unsupervised Domain Adaptation (MMUDA) framework, to improve the generalization of segmentation transformers to extreme accident scenes. In MMUDA, we make use of Multi-Domain Mixed Sampling to augment the images of multiple-source domains (normal scenes) with the target data appearances (abnormal scenes). To train our model, we intertwine and study a meta-learning strategy in the multi-source setting for robustifying the segmentation results. We further enhance the segmentation backbone (SegFormer) with a HybridASPP decoder design, featuring large window attention spatial pyramid pooling and strip pooling, to efficiently aggregate long-range contextual dependencies. Our approach achieves a mIoU score of 46.97% on the DADA-seg benchmark, surpassing the previous state-of-the-art model by more than 7.50%. Code will be made publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2203.10395

PDF

https://arxiv.org/pdf/2203.10395.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot