Paper Reading AI Learner

Machine Composition of Korean Music via Topological Data Analysis and Artificial Neural Network

2022-03-29 12:11:31
Mai Lan Tran, Dongjin Lee, Jae-Hun Jung

Abstract

Common AI music composition algorithms based on artificial neural networks are to train a machine by feeding a large number of music pieces and create artificial neural networks that can produce music similar to the input music data. This approach is a blackbox optimization, that is, the underlying composition algorithm is, in general, not known to users. In this paper, we present a way of machine composition that trains a machine the composition principle embedded in the given music data instead of directly feeding music pieces. We propose this approach by using the concept of {\color{black}{Overlap}} matrix proposed in \cite{TPJ}. In \cite{TPJ}, a type of Korean music, so-called the {\it Dodeuri} music such as Suyeonjangjigok has been analyzed using topological data analysis (TDA), particularly using persistent homology. As the raw music data is not suitable for TDA analysis, the music data is first reconstructed as a graph. The node of the graph is defined as a two-dimensional vector composed of the pitch and duration of each music note. The edge between two nodes is created when those nodes appear consecutively in the music flow. Distance is defined based on the frequency of such appearances. Through TDA on the constructed graph, a unique set of cycles is found for the given music. In \cite{TPJ}, the new concept of the {\it {\color{black}{Overlap}} matrix} has been proposed, which visualizes how those cycles are interconnected over the music flow, in a matrix form. In this paper, we explain how we use the {\color{black}{Overlap}} matrix for machine composition. The {\color{black}{Overlap}} matrix makes it possible to compose a new music piece algorithmically and also provide a seed music towards the desired artificial neural network. In this paper, we use the {\it Dodeuri} music and explain detailed steps.

Abstract (translated)

URL

https://arxiv.org/abs/2203.15468

PDF

https://arxiv.org/pdf/2203.15468.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot