Paper Reading AI Learner

End-To-End Optimization of Online Neural Network-supported Two-Stage Dereverberation for Hearing Devices

2022-04-06 11:08:28
Jean-Marie Lemercier, Joachim Thiemann, Raphael Koning, Timo Gerkmann

Abstract

A two-stage online dereverberation algorithm for hearing devices is presented in this paper. The approach combines a multi-channel multi-frame linear filtering approach with a single-channel single-frame post-filter. Both components rely on power spectral density (PSD) estimates provided by deep neural networks (DNNs). This contribution extends our prior work, which shows that directly optimizing for a criterion at the output of the multi-channel linear filtering stage results in a more efficient dereverberation, as compared to placing the criterion at the output of the DNN to optimize the PSD estimation. In the present work, we show that the dereverberation performance of the proposed first stage particularly improves the early-to-mid reverberation ratio if trained end-to-end. We thus argue that it can be combined with a post-filtering stage which benefits from the early-to-mid ratio improvement and is consequently able to efficiently suppress the residual late reverberation. This proposed two stage procedure is shown to be both very effective in terms of dereverberation performance and computational demands. Furthermore, the proposed system can be adapted to the needs of different types of hearing-device users by controlling the amount of reduction of early reflections. The proposed system outperforms the previously proposed end-to-end DNN-supported linear filtering algorithm, as well as other traditional approaches, based on an evaluation using the noise-free version of the WHAMR! dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2204.02978

PDF

https://arxiv.org/pdf/2204.02978.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot