Paper Reading AI Learner

Deep Reinforcement Learning in mmW-NOMA: Joint Power Allocation and Hybrid Beamforming

2022-05-13 07:55:48
Abbas Akbarpour-Kasgari, Mehrdad Ardebilipour

Abstract

High demand of data rate in the next generation of wireless communication could be ensured by Non-Orthogonal Multiple Access (NOMA) approach in the millimetre-wave (mmW) frequency band. Decreasing the interference on the other users while maintaining the bit rate via joint power allocation and beamforming is mandatory to guarantee the high demand of bit-rate. Furthermore, mmW frequency bands dictates the hybrid structure for beamforming because of the trade-off in implementation and performance, simultaneously. In this paper, joint power allocation and hybrid beamforming of mmW-NOMA systems is brought up via recent advances in machine learning and control theory approaches called Deep Reinforcement Learning (DRL). Actor-critic phenomena is exploited to measure the immediate reward and providing the new action to maximize the overall Q-value of the network. Additionally, to improve the stability of the approach, we have utilized Soft Actor-Critic (SAC) approach where overall reward and action entropy is maximized, simultaneously. The immediate reward has been defined based on the soft weighted summation of the rate of all the users. The soft weighting is based on the achieved rate and allocated power of each user. Furthermore, the channel responses between the users and base station (BS) is defined as the state of environment, while action space is involved of the digital and analog beamforming weights and allocated power to each user. The simulation results represent the superiority of the proposed approach rather than the Time-Division Multiple Access (TDMA) and Non-Line of Sight (NLOS)-NOMA in terms of sum-rate of the users. It's outperformance is caused by the joint optimization and independency of the proposed approach to the channel responses.

Abstract (translated)

URL

https://arxiv.org/abs/2205.06814

PDF

https://arxiv.org/pdf/2205.06814.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot