Paper Reading AI Learner

Hierarchical Distribution-Aware Testing of Deep Learning

2022-05-17 19:13:55
Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, Xiaowei Huang

Abstract

With its growing use in safety/security-critical applications, Deep Learning (DL) has raised increasing concerns regarding its dependability. In particular, DL has a notorious problem of lacking robustness. Despite recent efforts made in detecting Adversarial Examples (AEs) via state-of-the-art attacking and testing methods, they are normally input distribution agnostic and/or disregard the perception quality of AEs. Consequently, the detected AEs are irrelevant inputs in the application context or unnatural/unrealistic that can be easily noticed by humans. This may lead to a limited effect on improving the DL model's dependability, as the testing budget is likely to be wasted on detecting AEs that are encountered very rarely in its real-life operations. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the input distribution and the perceptual quality of inputs. The two considerations are encoded by a novel hierarchical mechanism. First, at the feature level, the input data distribution is extracted and approximated by data compression techniques and probability density estimators. Such quantified feature level distribution, together with indicators that are highly correlated with local robustness, are considered in selecting test seeds. Given a test seed, we then develop a two-step genetic algorithm for local test case generation at the pixel level, in which two fitness functions work alternatively to control the quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions at feature and pixel levels is superior to state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only the quality of detected AEs but also improving the overall robustness of the DL model under testing.

Abstract (translated)

URL

https://arxiv.org/abs/2205.08589

PDF

https://arxiv.org/pdf/2205.08589.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot