Paper Reading AI Learner

Cooperative Reinforcement Learning on Traffic Signal Control

2022-05-23 13:25:15
Chi-Chun Chao, Jun-Wei Hsieh, Bor-Shiun Wang

Abstract

Traffic signal control is a challenging real-world problem aiming to minimize overall travel time by coordinating vehicle movements at road intersections. Existing traffic signal control systems in use still rely heavily on oversimplified information and rule-based methods. Specifically, the periodicity of green/red light alternations can be considered as a prior for better planning of each agent in policy optimization. To better learn such adaptive and predictive priors, traditional RL-based methods can only return a fixed length from predefined action pool with only local agents. If there is no cooperation between these agents, some agents often make conflicts to other agents and thus decrease the whole throughput. This paper proposes a cooperative, multi-objective architecture with age-decaying weights to better estimate multiple reward terms for traffic signal control optimization, which termed COoperative Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (COMMA-DDPG). Two types of agents running to maximize rewards of different goals - one for local traffic optimization at each intersection and the other for global traffic waiting time optimization. The global agent is used to guide the local agents as a means for aiding faster learning but not used in the inference phase. We also provide an analysis of solution existence together with convergence proof for the proposed RL optimization. Evaluation is performed using real-world traffic data collected using traffic cameras from an Asian country. Our method can effectively reduce the total delayed time by 60\%. Results demonstrate its superiority when compared to SoTA methods.

Abstract (translated)

URL

https://arxiv.org/abs/2205.11291

PDF

https://arxiv.org/pdf/2205.11291.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot