Paper Reading AI Learner

MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation

2022-05-31 04:57:06
Wenzhuo Yang, Jia Li, Caiming Xiong, Steven C.H. Hoi

Abstract

Counterfactual explanation is an important Explainable AI technique to explain machine learning predictions. Despite being studied actively, existing optimization-based methods often assume that the underlying machine-learning model is differentiable and treat categorical attributes as continuous ones, which restricts their real-world applications when categorical attributes have many different values or the model is non-differentiable. To make counterfactual explanation suitable for real-world applications, we propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE), which adopts a newly designed pipeline that can efficiently handle non-differentiable machine-learning models on a large number of feature values. in our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity. Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.

Abstract (translated)

URL

https://arxiv.org/abs/2205.15540

PDF

https://arxiv.org/pdf/2205.15540.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot